If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6084=c^2
We move all terms to the left:
6084-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+6084=0
a = -1; b = 0; c = +6084;
Δ = b2-4ac
Δ = 02-4·(-1)·6084
Δ = 24336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{24336}=156$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-156}{2*-1}=\frac{-156}{-2} =+78 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+156}{2*-1}=\frac{156}{-2} =-78 $
| 3b+4=4b-5 | | E=-2p+160 | | -4t=-48 | | -5a-2+4a=-28 | | -28-5h=-4(3h-7) | | 50÷5+3∙4÷2-1=x | | C(x)=40.25-0.05 | | 4x+3x-4=34 | | 2x+-3x+5=6 | | 4^(x-8)=9 | | 6x+2x+2x=18- | | 7÷2=r÷r-15 | | 6x+2x+3x=180 | | (5u+8)(7-u)=0 | | 5=2(m-3) | | -5x+10=6x54 | | 0.5n+3=7 | | 0.009x-0.8=0.31 | | -5y=(6)-29 | | ?x15=12 | | 2/x-x/5=1/15 | | 5=1-4(m/2) | | 5x-9=3x-12=5x | | -3/7r=6 | | y-7÷5=10 | | y-7/5=10 | | 4x^2-20×+5=0 | | 5=-h/10 | | 9e+4=-5e+14+13e9e+4=-5e+14+13e | | 7=-16x^2+27.2x | | 30y^2+60y-1050=0 | | 13k−9k=12 |